4.4: Graph of Logarithmic Function

- Graph of a logarithmic function $f(x) = \log_{b}(x)$ is reflection of its inverse $y = b^{x}$ over y = x.
- The logarithmic function only has a vertical asymptote and one *x*-intercept.
- Function $f(x) = a \log_b(cx+d) + f$ is obtained from $g(x) = \log_b(x)$ by a horizontal shift of |d| units, possibly a reflection over *y*-axis if c < 0, a horizontal shrinking/stretching of ratio |c|, a possible reflection over *x*-axis if a < 0, a shrinking/stretching of ratio |a| and a vertical shift of *f*.
- Position of vertical asymptote for $f(x) = a \log_b(\underbrace{cx+d}_{=0}) + f$ is $x = -\frac{a}{c}$.
- Position of the vertical asymptotes for any log function can be found by setting inside of the log equal to zero.
- Position of *x*-intercept for any log function can be found by setting the function equal to zero. For a function of the form $f(x) = \log(g(x))$, set the inside function equal to one. See Section 4.6 for finding the *x*-intercepts of logarithmic functions.
- Domain of log function can be found by setting inside of the log strictly bigger than zero and solving the resulting inequality.

- 1. Consider the function $f(x) = 2\ln(x+3) + 1$.
 - (A) Find the function's *x*-intercept.
 - (B) Find its asymptotes.
 - (C) Find its domain.
 - (D) Graph the function.
- 2. Consider the function $f(x) = \ln(2x^2 3x + 1)$.
 - (A) Find its asymptote(s).
 - (B) Find its domain.
 - (C) Find the *x*-intercept(s).
- 3. Let $f(x) = \log_5(x-1) + 7$. Then $f^{-1}(x) =$
 - (A) $\ln(x-7) + 1$
 - (B) 5x 2
 - (C) $5^{x-7} + 1$

(D)
$$\frac{x-7}{5} + 1$$